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Abstract — Mobile Ad-Hoc Networks provide the
means to reduce significantly the power required for
routing from source to destination through multi-
hops between other nodes in the network. In
the presence of mobility, only continuous updating
can guarantee routes which minimize this power.
This paper performs a theoretical study, establish-
ing closed-form lower and upper bounds on the ex-
pected power corresponding respectively to continu-
ous updating and to routes never updated. We in-
troduce a mobility model which allows examining the
behavior of the expected power between the two ex-
trema as a function of the update period. The de-
rived expressions vary according to the number of
nodes in the network, their roaming area, the mo-
bility of the nodes, the power exponent which gov-
erns their consumption, and time. This analysis of a
one-dimension network in addition provides the basic
equations which enable its extension to two dimen-
sions, currently under investigation.

Index Terms — Energy, MANET, Mobility, Update
Period.

I. INTRODUCTION

Mobile Ad-Hoc Networks provide the means to reduce
significantly the power consumption for routing from
source to destination through multi-hops between other
nodes in the network. Given the power required to trans-
mit between neighboring nodes as a function of the dis-
tance between them, the distributed Bellmann-Ford al-
gorithm [1] can compute the minimum-power route be-
tween a source and destination in the network. In the
case of mobile nodes, this route remains valid for only a
short period of time [2] and necessitates frequent updat-
ing to maintain it.

This work develops analytical expressions for the up-
per and lower bounds on the expected power to route in
a one-dimensional network for a number of routing sce-
narios. The expressions vary according to the number of
nodes in the network, their roaming area, the mobility
of the nodes, the power exponent which governs their
consumption, and time. Frequent updating maintains
minimum-power routes, but introduces many overhead
messages throughout the network [3, 4]. Conversely, up-
dating preserves the battery life of the nodes, and so
the connectivity of the network. We study the effect of
the update period on the expected power and energy.

The basic equations presented here also serve in the ex-
tension to a two-dimensional network, currently under
investigation.

This paper is organized as follows. Section II develops
a lower bound on the expected power required to trans-
mit between source and destination nodes with known
positions in a network. The extended result in the sub-
sequent section covers the more general scenario of the
pair randomly positioned, and cases with multiple source
and/or destination nodes. Section IV derives analogous
results for the upper bound on the expected power. The
mobility model introduced in Section V enables studying
the expected power as a function of the update period
and computing the associated expected energy, or bat-
tery life. Lastly Section VI describes some areas of work
in progress and extensions of the results here for more
general applicability.

II. MINIMUM POWER BETWEEN FIXED SOURCE AND
DESTINATION

Consider the scenario of routing from a source node S to
a destination node D, separated by a distance d, through
n intermediate nodes indexed through ¢. Let the position
zs = 0,zp = d, and the independent positions of the
intermediate nodes have the density function
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Assuming P;; = |z; — z;|" the power necessary to route
from node i to j according to some exponent r which
relates increasing power consumption to increasing dis-
tance for r > 1, P;j...p below describes the power to

transmit from S to D through the n intermediate nodes

and n + 1 hops, if S routes to i, ¢ routes to j, ..., and k
routes to D.
Pyt = |ai —asl” +l2; ol + -+ [ap —a”  (2)

The minimum power required to route from S to D
includes all nodes in between the two, dividing the total
transmission distance into the largest number of hops.
Each node in the route transmits to the immediate node
with a greater position, in other words according to
their position order. It is trivial to show through the
Minkowski inequality [5] that this route is minimal for
r>1.



£(P12 n|$1 <z2<-

E(P) denotes the minimum power (m) for the sce-
nario of fixed (F’) source and destination. Equation 3 ex-
presses this value through the sum of the expected values
of the minimum power given a particular ordering of the
intermediate nodes, each weighed by the probability of
that ordering. Hence the sum spans the n permutation
of the n elements of the index set of the intermediate
nodes, denoted by P ;... x} -

&Pr) = Z pai <z << 2p)E(Pyj . plwi <mj <o <ap) (3)
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As the intermediate nodes have the same position den-
sity, all terms in the sum of (3) are equal to each other,
and since there are n! permutations, the sum can be
written in terms of the Pj»..., component alone, chosen
arbitrarily.

The position independence of the intermediate nodes
allows expressing the probability of the condition in (4)
as a product of the probabilities p(z;—1 < x;) = d_f%
(see eq. 1) with xz; as the random variable:

p(z1<z2<-- p(Tn—1<Tn) (5)

Now enforcing this condition of dependence amongst the
nodes by choosing without loss of generality xz; as the
independent variable, x> as a dependent variable of z1,
x3 as a dependent variable of x5, and so on, gives the
following conditional position densities (see eq. 1):
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Now we can write the expected value in (4) as

- <zp) = (6)
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where P}, denotes the value in (2) without the abso-
lute signs. The absolute signs can be discarded here since
the position ordering ensures that all quantities of Pys...,,
are positive. Replacing the expressions in (4) with (5)
and (6), and distributing p(z;—1 < z;) throughout gives
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above expression simplifies to
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The Appendix reduces (7) to the closed-form expres-

sion below, stated explicitly in terms of the parameters
d and n for future reference:
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III. MINIMUM POWER BETWEEN RANDOM SOURCE
AND DESTINATION

This section extends the final result of the previous sec-
tion to a more general scenario where the source and
destination nodes have the same position density as the
intermediate nodes, for a total of n nodes in the network.
Now the minimum-power route includes only the m in-
termediate nodes between S and D for multi-hopping.
In the sequel we compute the minimum power £(Pg')
between random (R) source and destination.

Under the assumption of uniformly distributed nodes,
the density function of the distance y = |zs — zp| be-
tween any two source and destination nodes follows [6]:
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Given the distance between S and D, we now seek the
density function of the number m of intermediate nodes
lying between the two. The probability that the position
z of an intermediate node lies between the source and
destination nodes is simply p(z € y) = %, and since
all the intermediate nodes are i.i.d., the probability that
exactly m out of the remaining n — 2 nodes lies between

S and D follows the Bernoulli distribution for m:
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Now £(Pg') can be found by averaging £(Pj*|y, 1) in

(8) through the joint density function f,,(y, 1) over all
values of y and p, as shown below:
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Employing the identity in equation (A.6) for the inte-
gral above and simplifying gives

(11)



my_ L nin d"
) = s )2 i)

(12)

This result extends readily to the cases for multiple
source and/or destination routing: for example, if n
nodes route to n destinations (n? total routes), the min-
imum power of the network is n?£(PR), and average
power per node is nE(PgF).

IV. MAXIMUM POWER

In a mobile network, we assume that an update estab-
lishes the minimum-power route according to the node
positions at the time of execution. As time progresses
and in the absence of further updating, the nodes main-
tain that same route, which however may depart from
minimum due to their mobility interfering with the or-
der of the nodes at the last update. We define the maz-
imum power, or the worst-case power, as the expected
power when the route has not been updated for so long
to completely destroy this order. At this time, we say
the network has returned to equilibrium.

A. Fized Source and Destination

This section adopts the same model as in Section II with
zs = 0 and zp = d fixed, and n intermediate nodes
uniformly distributed between the two. Equation (13)
represents the maximum power (M) for routing from S
to D through n unordered intermediate nodes. Note
that here we assume no position ordering, necessitating
the absolute signs of Pjj..,. Observing that the n —
1 innermost terms feature the same probability density
of y in (9) allows rewriting them compactly as a single
term (n — 1)€(y"). Substituting the latter into (13) and
expanding & leads to (14).
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Evaluating the integrals above, invoking once again the
identity in (A.6), reveals the following closed-form ex-
pression
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innermost

B. Random Source and Destination

The derivation presented in the sequel for the max-
imum power between random source and destination

closely follows the series of steps in Section III, how-
ever with some important differences. At an update,
the minimum-power route includes the m nodes which
lie within the distance y between S and D; at equi-
librium, the route still contains exactly m intermediate
nodes, but S and D may not be located at the same dis-
tance y. Hence we cannot just average £(P) through
fym(y,p) as in the previous section to obtain &(PA).
Rather we note that at equilibrium, we simply have total
n=m+2 unordered nodes (including S and D) randomly
distributed between 0 and d. The expected power of the
source to destination route is (n — 1)€(y") since there
are n—1 hops between the nodes, and each one has the
density of y. Note the correspondence of this expected
power to the innermost component of (14). Replacing
n=m+2 into this component of (15) yields a modified
maximum power below, stated explicitly only in terms
of m:
M 2(m + 1)d"
Ewplim) = =I5 s (16)
Now we can find the maximum power between ran-
dom source and destination £(P}) simply by averag-
ing £(PM|p) through f, (1), as described in (17). Note
the dependence of m on the distance y to determine the
number of intermediate nodes between the source and
destination at the update time. Substituting fn,(u) =
fod fy(¥) fm(ply)dy into (17) enables simplifying &(PA)
in the subsequent steps.
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Employing once more the identity in equation (A.6) for
the integral above and simplifying gives
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C. Comparison of Minimum to Mazimum Power

Figure 1 compares £(PJ) to E(PM) versus the num-
ber of nodes in the network with d = 10, for r = 2.5
and r = 3.5 Increasing the number of nodes in the net-
work divides the total transmission distance into many
smaller distances, enabling a reduction in the minimum
power for r > 11. On the contrary, the maximum power

INote that for 7 = 1, the minimum power remains nearly con-
stant with respect to n.



800 e

600 e

400+ g

200 7

Minimum Power , r
Maximum Power, r
Minimum Power , r:
Maximum Power, r:

_— =2.5
77777777777777 =25

=3.5
.............. =35

Figure 1: Expected Minimum and Maximum Power ver-
sus n.

increases with n since the average distance of each hop
remains independent of the number of nodes in the net-
work, but the number of hops grows.

Figure 2 shows the same curves as in the previous
figure, however varying as a function of r, for n = 10
and n = 20. While all four curves increase with greater
r, the effect on the maximum power is much more severe,
again because the average distance of each hop is much
larger for the maximum power.

V. TRANSIENT POWER

An update establishes the minimum-power route at time
t = 0, and in the absence of further updates this route
grows to the maximum-power route, as explained in the
previous section. We define the transient power as the
expected power as a function of time, which increases
from its minimum to its maximum value. This section
develops an expression for it and studies its behavior by
introducing a mobility model.

The subsequent derivation for the transient power be-
tween fixed source and destination closely follows the
one for the minimum power in Section II, enabling us to
omit most details. Equation (19) expresses the transient
power (T') with z; now a variable of ¢ and conditioned
upon the ordering of the nodes at the update time, where
79 denotes the position of node i at t = 0.
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Figure 2: Expected Minimum and Maximum Power ver-
sus r.

Rewriting
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and substituting (21) and (22) into (20) gives the final
expression
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The derivation for the expression £(Pf), the transient
power between random source and destination, follows
directly as presented in Section ITI and Subsection IV-B
and is omitted here due to lack of space.



A. Diffusion Mobility Model

Equilibrium assumes time independence of the node po-
sitions, hence equal probability of finding a node any-
where between 0 and d. An update perturbs equilibrium
and so the time independence of the node positions: the
ordering condition constrains z9_; <z; at this time; how-
ever the network eventually returns to equilibrium in the
absence of further updating through a transient state
governed by the mobility model of the nodes.

The general nature of the expression in equation (23)
lends to a broad range of mobility models expressed in
terms of the node density f.(xi|z?). As an example, we
present the diffusion mobility model below with mobility
parameter ¢ (unit area/time) [7].

82f;c($i,t) 5 3fw($i,t)
oz~ ot

The density of a node now varies as a function of time,
seeking to redistribute itself uniformly from its state at
t = 0 forward. In this model, the density changes at a
faster (slower) rate at positions where the profile imbal-
ance is greatest (least): increasing where the density is
smallest and decreasing where it is greatest. A fitting
scenario depicts a troop in a military operation assigned
to survey an area. When deployed at a certain position,
the probability of finding the troop at that same position
falls in time, while the probability of finding him /her at
other points in the area rises. At a long enough time
after, dependent on the value of the mobility parameter,
it will be equally probable to find the troop anywhere in
the survey area.

Applying the boundary conditions
W = 0 to (24) ensures that the density of the

node lies between 0 and d for all time, and yields the
following solution:

(24)
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Lastly, applying the initial condition f,(z;,t = 0) =
§(z; — 2?) and dropping the notation for ¢ gives the final
solution

(oo}
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fm(l‘z|$?) =3 + p E cos ( ﬂ:’ ) cos (%) e~ nt, (26)

h=1

Figure 3 displays the transient density function
fo(@i|z9_; <2?) (see eq. 22) for 20 | =7 at five points in
time, with parameters d = 10 and ¢ = 1. The ordering
condition requires z; to lie to the right of z9_; at ¢t = 0.
As time progresses, the chance of finding the node in
this constrained area diminishes, augmenting the chance

0.5+
0.4+

0.3+

0.29
S—
8 1

0 2 4 6 0
LegenéI
t=0
t=1
t=5
t=10
—————————————— =60

Figure 3: Transient Density Function f,(z;|z)_; < 29).

of finding it in the complement area. The network re-
turns to equilibrium by ¢ = 60.

Figure 4 displays £(PL) versus time bounded by its
minimum and maximum values, with parameters d = 10,
c=1r =2, and n = 10. Updating the network at
t = 0 sets the power to the minimum value of 16.67, as
predicted through (8). The dark solid curve illustrates
the transient power if no update occurs within the time
range shown; it achieves the maximum power 216.67 as
predicted through (15) by ¢ = 60. The light solid curve
illustrates the transient power with updates every ¢ = 10;
it realizes a significant reduction in power consumption
over the other. The area between the two curves rep-
resents the energy savings in battery life of the network
within the time range shown, which is almost 41% for
this example; the transient energy can be found exactly
through analytical integration over the transient power.

VI. CoNCLUSIONS AND FURTHER WORK

This paper develops closed-form upper and lower bounds
on the expected power required to route through multi-
hops in a one-dimensional Mobile Ad-Hoc Network. We
illustrate and interpret plots on how these quantities
vary with the number of nodes in the network and the
transmission power exponent, most notably that the
lower bound decreases and upper bound increases with
increasing number of network nodes. The diffusion mo-
bility model enables the analysis of the expected power
as a function of the update period, enabling the compu-
tation of the expected battery life as a function of the
update period as well.

Current work underway employs the basic equations
presented here to expand the study to two dimensions.
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In the future we also plan to develop analogous results
for hierarchical networks involving clusters.

APPENDIX

In order to simplify the expression in (7), we consider
the i** term of its integrand individually, as described
through (A.1). Successively integrating over the inner-
most variables z,, to z;y1, variables which do not ap-
pear in the integrand of (A.1), reduces the expression to
(A.2). Now the region of integration over x; appears in
Figure A.1, with z; as the dependent variable of z;_;.
By switching the order of integration of x; and x;_1,
effectively transforming z;_; to the dependent variable
of x;, and applying the appropriate limit changes as in
(A.3), we can integrate first over x; 1 which evaluates to
(A.4). Successive switching of order between z; and z;
and integration over z; for j =¢—2,7—3,...,1 reduces

o (A.5), leaving x; as the sole variable.
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Figure A.1: Region of Integration.
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Substituting for the integral above the identity
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and simplifying leads to
n! d"
(r+ 1) +2)--(r+n)
The independence of the above expression from 4 indi-
cates that the (n + 1) terms have equal value, and so
multiplying (A.7) by (n + 1) renders the closed-form so-
lution for (7)
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